ЕГЭ по математике: разбираем сложные случаи с экспертами МЦКО
О чем говорит сумма баллов, набранных выпускником на профильном ЕГЭ по математике? Какие задания самые сложные? Что нужно знать, чтобы правильно их выполнить?
Подробнее об этом рассказывают эксперты Московского центра качества образования: заместитель председателя предметной комиссии ЕГЭ по математике города Москвы Марина Черняева и эксперт предметной комиссии Мария Шабанова.
Сумма баллов как показатель уровня подготовки выпускников
Свидетельство, выдаваемое после ЕГЭ, содержит лишь информацию о сумме баллов, которую выпускник набрал по результатам того или иного экзамена. Эти цифры свидетельствуют об уровне подготовки школьника. Специалисты условно выделяют пять групп. Пороговые значения баллов каждый год немного меняются, но перечень и характеристика групп остаются прежними. Приведем пороговые баллы экзамена 2020 года:
- 0-6 первичных или 0-27 тестовых баллов: школьники с недостаточным уровнем подготовки для получения аттестата о среднем общем образовании;
- 7-10 первичных или 33-50 тестовых баллов: освоившие школьный курс математики на базовом уровне, но не обладающие достаточно устойчивыми навыками для успешного продолжения математического образования по техническим специальностям;
- 11-13 первичных или 56–68 тестовых баллов: имеющие базовый уровень подготовки для освоения базового курса высшей математики в вузе;
- 14-22 первичных или 70–86 тестовых баллов: имеющие повышенный уровень подготовки, достаточный для продолжения образования по направлениям и специальностям, связанным с освоением специальных математических дисциплин для решения профессиональных задач;
- 23-32 первичных или 88–100 тестовых баллов: имеющие высокий уровень подготовки, достаточный для дальнейшей специализации в области математики на профессиональном уровне.
Если результаты пробных испытаний пока не соответствуют баллам интересующей выпускника группы, не стоит расстраиваться. Во-первых, еще есть время подготовиться, причем к решению даже самых сложных задач экзамена. А во-вторых, нужно помнить, что это лишь примерная рамка. Она будет скорректирована по результатам экзамена 2021 года. Кроме того, она носит рекомендательный характер. Для уточнения информации советуем заглянуть на сайт приемной комиссии вуза, в который ребенок планирует поступать.
О самых сложных заданиях
В контрольные измерительные материалы входят задания разных уровней сложности: базового (№1-8), повышенного (№9-17) и высокого (№18-19). Самые трудные задачи экзамена – №18 и №19. Их выполнение позволяет набрать до четырех первичных баллов.
Традиционно задание №18 включает алгебраическую задачу на нахождение значений параметров. Чтобы с ним справиться, необходимы не только навыки решения уравнений, неравенств и их систем, аналитического исследования свойств функций, но и гибкость мышления, готовность привлекать методы и средства из разных разделов математики. Одна из проблем решения данного задания – проблема выбора способа, который быстрее всего приведет к правильному результату. Убедиться в этом можно, если посмотреть разбор решения задания №18 ЕГЭ-2020 (резервный день):
Задание №19 представляет собой задачу на числа, для решения которой вполне достаточно знаний математики в объеме общеобразовательной программы. Главная ее сложность состоит в необходимости обнаружить скрытые закономерности на основе экспериментов с числами, придумать идею решения, а затем построить и исследовать подходящую модель в отношении описанной в задаче ситуации. Разбор задачи № 19 ЕГЭ-2020 представляет доцент МФТИ Борис Трушин:
Задание №18
Практика показывает, что зачетные баллы за задание №18 получают участники экзамена не только с повышенным и высоким уровнем математической подготовки, но и с базовым. Даже если выпускник не готовился к решению задачи с параметрами специально, советуем не отказываться от нее. Некоторые задания такого типа состоят из материалов основной школы и ненамного сложнее задач ОГЭ (посмотреть пример задачи ОГЭ с параметром). Так что и здесь получить 1–2 балла вполне реально.
Советы по подготовке к решению задания №18
Приступать к освоению методов и приемов решения данного задания лучше после выполнения задач №13 и №15.
Для начала рекомендуем попробовать решить простое уравнение или неравенство с параметром из школьного учебника (линейное, квадратное, дробно-рациональное, тригонометрическое и т. п.) и сравнить с решением аналогичного уравнения или неравенства без параметра. Стоит следить за тем, как неопределенность значения коэффициента влияет на ход решения.
После того как выпускник освоится с решением простейших задач с параметром, можно приступать к решению задач из открытых банков заданий. Для начала лучше выбирать задачи, допускающие решение аналитическим методом. Подборку таких упражнений (аналитическое решение уравнений, неравенств и их систем) можно посмотреть здесь.
Особенность задач с параметрами заключается в возможности привлечь к их решению различные идеи и методы: построение изображения множества решений в координатах или использование знаний видов и свойств элементарных функций.
Нужно стараться расширять арсенал идей и применяемых методов. Для этого можно использовать специальные пособия (например, пособие С. А. Шестакова), видеоуроки, открытые банки заданий с разбором решений. Чем богаче арсенал, тем выше вероятность получить наивысший балл за это задание.
Задание №19
Средний процент выполнения задания №19 гораздо выше, чем заданий №14, 16 и 18.
В чем же секрет? Дело в том, что задание №19 состоит из трех задач, и лишь третья – высокого уровня сложности, первые же две – базового. Они доступны не только всем участникам экзамена, но и широкому кругу любителей поломать голову над математической задачей.
Попробуйте сами:
На доске написано n единиц, между некоторыми из них поставили знаки + и посчитали сумму. Например, если изначально было написано n = 12 единиц, то могла получиться такая сумма:
1 + 11 + 11 + 111 + 11 + 1 + 1 = 147.
а) Могла ли сумма равняться 150, если n = 60?
б) Могла ли сумма равняться 150, если n = 80?
А теперь проверьте правильность своих выводов здесь.
Советы по подготовке к решению задания №19
Части А и Б задания №19 требуют ответа на вопрос «Может ли?». Положительный ответ должен быть подтвержден примером, а отрицательный – демонстрацией противоречия.
«Артподготовкой» к конструированию примеров может служить решение заданий №19 и 20 базового ЕГЭ по математике: «Числа и их свойства». Это позволит повторить свойства и способы записи целых чисел, а также создать арсенал приемов конструирования примеров.
Вооружившись этими знаниями и опытом, можно осилить решение задачи №19 профильного ЕГЭ в той части, где требуется дать положительный ответ на вопрос «Может ли?». Не стоит сразу же смотреть ответ, он ничего не расскажет о логике рассуждений, предшествующей появлению примера. Лучше прийти к нему самостоятельно.
Долгие и безуспешные попытки сконструировать подходящий пример наводят на мысль об отрицательном ответе на поставленный вопрос. Здесь стоит вспомнить и применить метод «от противного», который школьники изучали в курсе геометрии. Нужно допустить, что пример существует и пытаться вести рассуждение так, чтобы всем стало ясно: подобное допущение приводит к противоречию. Если опыта применения данного метода мало, лучше начать с прочтения разбора готовых решений, а затем перейти к аналогичным задачам и попытаться решить их самостоятельно.
Ресурсы для самоподготовки
Вариантов для самоподготовки к экзаменам сегодня достаточно. Так, например, на ресурсах Московского центра качества образования можно посмотреть консультации, которые проводят ведущие эксперты предметных комиссий ЕГЭ города Москвы.
Кроме того, Московский центр качества образования совместно с Московским образовательным телеканалом запустили новый еженедельный проект – «Субботы московского выпускника» для учащихся 9-х и 11-х классов. Ведущие эксперты МЦКО в прямом эфире Mosobr.tv разбирают решения заданий ЕГЭ и ОГЭ, а также проводят видеоконсультации по различным темам для подготовки к государственной итоговой аттестации. Школьники могут сами выбрать тему ближайшей программы. Для этого необходимо принять участие в голосовании, которое проходит каждую неделю с понедельника по среду.
Для подготовки к ЕГЭ также можно использовать демоверсии, онлайн-уроки, дистанционные консультации и вебинары с разбором заданий от экспертов МЦКО – они доступны в записи на сайте Московского центра качества образования.
А с помощью самодиагностики МЭШ можно проверить свой уровень подготовки по каждому школьному предмету. На сайте доступны работы четырех уровней сложности: стартового, базового, профильного и олимпиадного.
Главное – не бояться трудностей, грамотно выстраивать процесс подготовки, не упускать драгоценное время, и тогда отличный результат ЕГЭ перестанет быть призрачной мечтой.